Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-(1)/(3)x^(2)-(1)/(2)x, then what is 
f(-3x) as a simplified polynomial?
Answer:

Given the function f(x)=13x212x f(x)=-\frac{1}{3} x^{2}-\frac{1}{2} x , then what is f(3x) f(-3 x) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=13x212x f(x)=-\frac{1}{3} x^{2}-\frac{1}{2} x , then what is f(3x) f(-3 x) as a simplified polynomial?\newlineAnswer:
  1. Understand function transformation: Understand the function transformation.\newlineWe need to find f(3x)f(-3x) using the given function f(x)=(13)x2(12)xf(x) = -(\frac{1}{3})x^2 - (\frac{1}{2})x. This means we will substitute 3x-3x for every xx in the function f(x)f(x).
  2. Substitute into function: Substitute 3x-3x into the function.\newlinef(3x)=(13)(3x)2(12)(3x)f(-3x) = -\left(\frac{1}{3}\right)(-3x)^2 - \left(\frac{1}{2}\right)(-3x)
  3. Simplify squared term: Simplify the squared term. f(3x)=(13)(9x2)(12)(3x)f(-3x) = -(\frac{1}{3})(9x^2) - (\frac{1}{2})(-3x)
  4. Multiply by constants: Multiply the constants by the squared term.\newlinef(3x)=3x2(12)(3x)f(-3x) = -3x^2 - (\frac{1}{2})(-3x)
  5. Simplify linear term: Simplify the linear term. f(3x)=3x2+(32)xf(-3x) = -3x^2 + \left(\frac{3}{2}\right)x
  6. Check for simplification: Check for any possible simplification.\newlineThe polynomial is already in its simplest form.

More problems from Composition of linear and quadratic functions: find an equation