Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
g(f(-1)).

{:[f(x)=x^(2)-3x-10],[g(x)=3x-10]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of g(f(1)) g(f(-1)) .\newlinef(x)=x23x10g(x)=3x10 \begin{array}{l} f(x)=x^{2}-3 x-10 \\ g(x)=3 x-10 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of g(f(1)) g(f(-1)) .\newlinef(x)=x23x10g(x)=3x10 \begin{array}{l} f(x)=x^{2}-3 x-10 \\ g(x)=3 x-10 \end{array} \newlineAnswer:
  1. Given Functions: We are given two functions:\newlinef(x)=x23x10f(x) = x^2 - 3x - 10\newlineg(x)=3x10g(x) = 3x - 10\newlineWe need to find the value of g(f(1))g(f(-1)). First, we will calculate f(1)f(-1).
  2. Calculate f(1)f(-1): Substitute x=1x = -1 into the function f(x)f(x).
    f(1)=(1)23(1)10f(-1) = (-1)^2 - 3(-1) - 10
    Calculate the value of f(1)f(-1).
    f(1)=1+310f(-1) = 1 + 3 - 10
    f(1)=410f(-1) = 4 - 10
    f(1)=6f(-1) = -6
  3. Calculate g(f(1))g(f(-1)): Now that we have the value of f(1)f(-1), we will substitute it into the function g(x)g(x) to find g(f(1))g(f(-1)).\newlineSubstitute f(1)=6f(-1) = -6 into g(x)g(x).\newlineg(f(1))=g(6)g(f(-1)) = g(-6)\newlineg(6)=3(6)10g(-6) = 3(-6) - 10\newlineCalculate the value of g(6)g(-6).\newlineg(6)=1810g(-6) = -18 - 10\newlinef(1)f(-1)00

More problems from Evaluate expression when two complex numbers are given