Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
f(g(-2)).

{:[f(x)=2x-3],[g(x)=3x^(2)+7x+12]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(2)) f(g(-2)) .\newlinef(x)=2x3g(x)=3x2+7x+12 \begin{array}{l} f(x)=2 x-3 \\ g(x)=3 x^{2}+7 x+12 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(2)) f(g(-2)) .\newlinef(x)=2x3g(x)=3x2+7x+12 \begin{array}{l} f(x)=2 x-3 \\ g(x)=3 x^{2}+7 x+12 \end{array} \newlineAnswer:
  1. Find g(2)g(-2): First, we need to find the value of g(2)g(-2) by substituting xx with 2-2 in the function g(x)=3x2+7x+12g(x) = 3x^2 + 7x + 12.\newlineCalculation: g(2)=3(2)2+7(2)+12g(-2) = 3(-2)^2 + 7(-2) + 12\newline g(2)=3(4)14+12g(-2) = 3(4) - 14 + 12\newline g(2)=1214+12g(-2) = 12 - 14 + 12\newline g(2)=10g(-2) = 10
  2. Calculate f(g(2))f(g(-2)): Now that we have the value of g(2)g(-2), we can find f(g(2))f(g(-2)) by substituting g(2)g(-2) into the function f(x)=2x3f(x) = 2x - 3.
    Calculation: f(g(2))=f(10)=2(10)3f(g(-2)) = f(10) = 2(10) - 3
    f(10)=203f(10) = 20 - 3
    f(10)=17f(10) = 17

More problems from Evaluate an exponential function