Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
g(f(8)).

{:[f(x)=2x-13],[g(x)=x^(2)+4x-9]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of g(f(8)) g(f(8)) .\newlinef(x)=2x13g(x)=x2+4x9 \begin{array}{l} f(x)=2 x-13 \\ g(x)=x^{2}+4 x-9 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of g(f(8)) g(f(8)) .\newlinef(x)=2x13g(x)=x2+4x9 \begin{array}{l} f(x)=2 x-13 \\ g(x)=x^{2}+4 x-9 \end{array} \newlineAnswer:
  1. Find f(8)f(8): First, we need to find the value of f(8)f(8). Substitute 88 into the function f(x)f(x). f(8)=2(8)13f(8) = 2(8) - 13
  2. Calculate f(8)f(8): Now, let's perform the calculation for f(8)f(8).
    f(8)=2(8)13f(8) = 2(8) - 13
    f(8)=1613f(8) = 16 - 13
    f(8)=3f(8) = 3
  3. Find g(f(8))g(f(8)): Next, we need to find the value of g(f(8))g(f(8)), which means we need to substitute f(8)f(8) into g(x)g(x).\newlineSubstitute 33 into the function g(x)g(x).\newlineg(f(8))=g(3)g(f(8)) = g(3)\newlineg(3)=(3)2+4(3)9g(3) = (3)^2 + 4(3) - 9
  4. Calculate g(3)g(3): Finally, let's perform the calculation for g(3)g(3).
    g(3)=(3)2+4(3)9g(3) = (3)^2 + 4(3) - 9
    g(3)=9+129g(3) = 9 + 12 - 9
    g(3)=219g(3) = 21 - 9
    g(3)=12g(3) = 12

More problems from Evaluate exponential functions