Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
(g@f)(0).

{:[f(x)=-x-4],[g(x)=x^(2)-4x-15]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of (gf)(0) (g \circ f)(0) .\newlinef(x)=x4g(x)=x24x15 \begin{array}{l} f(x)=-x-4 \\ g(x)=x^{2}-4 x-15 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of (gf)(0) (g \circ f)(0) .\newlinef(x)=x4g(x)=x24x15 \begin{array}{l} f(x)=-x-4 \\ g(x)=x^{2}-4 x-15 \end{array} \newlineAnswer:
  1. Find f(0)f(0): First, we need to find the value of f(0)f(0) by substituting xx with 00 in the function f(x)f(x).\newlinef(x)=x4f(x) = -x - 4\newlinef(0)=(0)4f(0) = -(0) - 4\newlinef(0)=4f(0) = -4
  2. Calculate g(f(0))g(f(0)): Now, we need to find the value of g(f(0))g(f(0)) by substituting f(0)f(0) into g(x)g(x).\newlineg(x)=x24x15g(x) = x^2 - 4x - 15\newlineg(f(0))=g(4)=(4)24(4)15g(f(0)) = g(-4) = (-4)^2 - 4*(-4) - 15
  3. Evaluate g(4)g(-4): Next, we calculate the value of g(4)g(-4).
    g(4)=16(16)15g(-4) = 16 - (-16) - 15
    g(4)=16+1615g(-4) = 16 + 16 - 15
    g(4)=3215g(-4) = 32 - 15
    g(4)=17g(-4) = 17

More problems from Evaluate an exponential function