Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
f(g(0)).

{:[f(x)=-5x-6],[g(x)=x^(2)-3x-10]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(0)) f(g(0)) .\newlinef(x)=5x6g(x)=x23x10 \begin{array}{l} f(x)=-5 x-6 \\ g(x)=x^{2}-3 x-10 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(0)) f(g(0)) .\newlinef(x)=5x6g(x)=x23x10 \begin{array}{l} f(x)=-5 x-6 \\ g(x)=x^{2}-3 x-10 \end{array} \newlineAnswer:
  1. Find g(0)g(0): First, we need to find the value of g(0)g(0) by substituting xx with 00 in the function g(x)g(x).
    g(x)=x23x10g(x) = x^2 - 3x - 10
    g(0)=(0)23(0)10g(0) = (0)^2 - 3(0) - 10
    g(0)=0010g(0) = 0 - 0 - 10
    g(0)=10g(0) = -10
  2. Substitute g(0)g(0) into f(x)f(x): Now that we have g(0)=10g(0) = -10, we substitute 10-10 into the function f(x)f(x) to find f(g(0))f(g(0)).
    f(x)=5x6f(x) = -5x - 6
    f(g(0))=f(10)f(g(0)) = f(-10)
    f(10)=5(10)6f(-10) = -5(-10) - 6
    f(10)=506f(-10) = 50 - 6
    f(x)f(x)00

More problems from Evaluate an exponential function