Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
y=v^(4)+2, find 
(d)/(dv)(3y^(2)+4cos v) in terms of only 
v.
Answer:

Given that y=v4+2 y=v^{4}+2 , find ddv(3y2+4cosv) \frac{d}{d v}\left(3 y^{2}+4 \cos v\right) in terms of only v v .\newlineAnswer:

Full solution

Q. Given that y=v4+2 y=v^{4}+2 , find ddv(3y2+4cosv) \frac{d}{d v}\left(3 y^{2}+4 \cos v\right) in terms of only v v .\newlineAnswer:
  1. Given Function: We are given the function yy in terms of vv:y=v4+2y = v^4 + 2We need to find the derivative of the expression 3y2+4cos(v)3y^2 + 4\cos(v) with respect to vv. To do this, we will use the chain rule for differentiation, which states that the derivative of a composite function is the derivative of the outer function times the derivative of the inner function.
  2. Derivative of y: First, let's find the derivative of y with respect to vv:
    y=v4+2y = v^4 + 2
    dydv=ddv(v4)+ddv(2)\frac{dy}{dv} = \frac{d}{dv}(v^4) + \frac{d}{dv}(2)
    dydv=4v3+0\frac{dy}{dv} = 4v^3 + 0
    dydv=4v3\frac{dy}{dv} = 4v^3
  3. Derivative of 3y23y^2: Now, let's differentiate the expression 3y23y^2 with respect to yy: ddy(3y2)=6y\frac{d}{dy}(3y^2) = 6y
  4. Chain Rule Application: Using the chain rule, we can now find the derivative of 3y23y^2 with respect to vv: \newlineddv(3y2)=ddy(3y2)dydv\frac{d}{dv}(3y^2) = \frac{d}{dy}(3y^2) \cdot \frac{dy}{dv}\newlineddv(3y2)=6y4v3\frac{d}{dv}(3y^2) = 6y \cdot 4v^3\newlineddv(3y2)=24yv3\frac{d}{dv}(3y^2) = 24yv^3
  5. Derivative of 4cos(v)4\cos(v): Next, we differentiate 4cos(v)4\cos(v) with respect to vv:\newlineddv(4cos(v))=4sin(v)\frac{d}{dv}(4\cos(v)) = -4\sin(v)
  6. Combining Derivatives: Now we can combine the derivatives of both parts of the expression:\newlineddv(3y2+4cos(v))=ddv(3y2)+ddv(4cos(v))\frac{d}{dv}(3y^2 + 4\cos(v)) = \frac{d}{dv}(3y^2) + \frac{d}{dv}(4\cos(v))\newlineddv(3y2+4cos(v))=24yv34sin(v)\frac{d}{dv}(3y^2 + 4\cos(v)) = 24yv^3 - 4\sin(v)
  7. Substitution and Final Result: Finally, we substitute the expression for yy in terms of vv into the derivative: ddv(3y2+4cos(v))=24(v4+2)v34sin(v)\frac{d}{dv}(3y^2 + 4\cos(v)) = 24(v^4 + 2)v^3 - 4\sin(v) ddv(3y2+4cos(v))=24v7+48v34sin(v)\frac{d}{dv}(3y^2 + 4\cos(v)) = 24v^7 + 48v^3 - 4\sin(v)

More problems from Evaluate expression when two complex numbers are given