Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
u=w^(3)-4, find 
(d)/(dw)(4u^(2)+5cos w) in terms of only 
w.
Answer:

Given that u=w34 u=w^{3}-4 , find ddw(4u2+5cosw) \frac{d}{d w}\left(4 u^{2}+5 \cos w\right) in terms of only w w .\newlineAnswer:

Full solution

Q. Given that u=w34 u=w^{3}-4 , find ddw(4u2+5cosw) \frac{d}{d w}\left(4 u^{2}+5 \cos w\right) in terms of only w w .\newlineAnswer:
  1. Given function uu: We are given the function uu in terms of ww:u=w34u = w^3 - 4We need to find the derivative of the expression 4u2+5cos(w)4u^2 + 5\cos(w) with respect to ww. To do this, we will use the chain rule for differentiation, which states that the derivative of a composite function is the derivative of the outer function times the derivative of the inner function.
  2. Derivative of u: First, let's find the derivative of u with respect to w:\newlinedudw=d(w34)dw\frac{du}{dw} = \frac{d(w^3 - 4)}{dw}\newlineUsing the power rule, we get:\newlinedudw=3w2\frac{du}{dw} = 3w^2
  3. Derivative of 4u24u^2: Now, let's differentiate the expression 4u24u^2 with respect to uu: \newlined(4u2)du=8u\frac{d(4u^2)}{du} = 8u
  4. Chain rule application: Next, we apply the chain rule to find the derivative of 4u24u^2 with respect to ww: \newlined(4u2)dw=d(4u2)dududw\frac{d(4u^2)}{dw} = \frac{d(4u^2)}{du} \cdot \frac{du}{dw}\newlineSubstitute the derivatives we found:\newlined(4u2)dw=8u3w2\frac{d(4u^2)}{dw} = 8u \cdot 3w^2
  5. Derivative of 5cos(w)5\cos(w): Now, let's differentiate 5cos(w)5\cos(w) with respect to ww:d(5cos(w))dw=5sin(w)\frac{d(5\cos(w))}{dw} = -5\sin(w)
  6. Combining derivatives: Combine the derivatives of 4u24u^2 and 5cos(w)5\cos(w) to find the total derivative with respect to ww: \newlineddw(4u2+5cos(w))=d(4u2)dw+d(5cos(w))dw\frac{d}{dw}(4u^2 + 5\cos(w)) = \frac{d(4u^2)}{dw} + \frac{d(5\cos(w))}{dw}\newlineSubstitute the derivatives we found:\newlineddw(4u2+5cos(w))=8u3w25sin(w)\frac{d}{dw}(4u^2 + 5\cos(w)) = 8u \cdot 3w^2 - 5\sin(w)
  7. Expressing uu in terms of ww: Now, we need to express uu in terms of ww using the given u=w34u = w^3 - 4:ddw(4u2+5cos(w))=8(w34)3w25sin(w)\frac{d}{dw}(4u^2 + 5\cos(w)) = 8(w^3 - 4) \cdot 3w^2 - 5\sin(w)
  8. Simplifying the expression: Simplify the expression: ddw(4u2+5cos(w))=24w2(w34)5sin(w)\frac{d}{dw}(4u^2 + 5\cos(w)) = 24w^2(w^3 - 4) - 5\sin(w)

More problems from Evaluate expression when two complex numbers are given