Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
b > 0, simplify each of the following:
a) 
(i)log_(b)b^(4)

Given b>0 , simplify the following:\newline logbb4 \log _{b} b^{4}

Full solution

Q. Given b>0 b>0 , simplify the following:\newline logbb4 \log _{b} b^{4}
  1. Identify Property: Identify the property used to simplify logb(b4)\log_b(b^4). \newlineUsing the power property of logarithms, which states logb(mn)=nlogb(m)\log_b(m^n) = n \cdot \log_b(m), we can simplify the expression.
  2. Apply Power Property: Apply the power property to logb(b4)\log_b(b^4).\newlinelogb(b4)=4logb(b)\log_b(b^4) = 4 \cdot \log_b(b)
  3. Simplify Logarithm: Simplify logb(b)\log_b(b). \newlineSince logb(b)\log_b(b) is the logarithm of the base to itself, it equals 11. \newlinelogb(b)=1\log_b(b) = 1
  4. Multiply Values: Multiply the values.\newline4×logb(b)=4×1=44 \times \log_b(b) = 4 \times 1 = 4

More problems from Power property of logarithms