Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=3x-5

h(x)=(2)/(2x+3)
Write 
h(g(x)) as an expression in terms of 
x.

h(g(x))=

g(x)=3x5 g(x)=3 x-5 \newlineh(x)=22x+3 h(x)=\frac{2}{2 x+3} \newlineWrite h(g(x)) h(g(x)) as an expression in terms of x x .\newlineh(g(x))= h(g(x))=

Full solution

Q. g(x)=3x5 g(x)=3 x-5 \newlineh(x)=22x+3 h(x)=\frac{2}{2 x+3} \newlineWrite h(g(x)) h(g(x)) as an expression in terms of x x .\newlineh(g(x))= h(g(x))=
  1. Substitute g(x)g(x) into h(x)h(x): First, we need to substitute the expression for g(x)g(x) into h(x)h(x) to find h(g(x))h(g(x)). The function g(x)g(x) is given as 3x53x-5, so we will replace every xx in h(x)h(x) with 3x53x-5.
  2. Simplify h(g(x))h(g(x)) expression: The function h(x)h(x) is 22x+3\frac{2}{2x+3}. Substituting g(x)g(x) into h(x)h(x), we get h(g(x))=22(3x5)+3h(g(x)) = \frac{2}{2(3x-5)+3}.
  3. Simplify expression inside parentheses: Now, we simplify the expression inside the parentheses: 2(3x5)+3=6x10+32(3x-5)+3 = 6x - 10 + 3.
  4. Further simplification: Simplifying further, we get 6x10+3=6x76x - 10 + 3 = 6x - 7.
  5. Write complete expression for h(g(x))h(g(x)): Now, we can write the complete expression for h(g(x))h(g(x)): h(g(x))=26x7h(g(x)) = \frac{2}{6x - 7}.

More problems from Find the inverse of a linear function