Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(3x^(2)+y^(3))^(2)
Answer:

Fully simplify.\newline(3x2+y3)2 \left(3 x^{2}+y^{3}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(3x2+y3)2 \left(3 x^{2}+y^{3}\right)^{2} \newlineAnswer:
  1. Apply Binomial Expansion: We have the expression (3x2+y3)2(3x^{2} + y^{3})^{2}. To simplify this, we need to apply the binomial expansion formula (a+b)2=a2+2ab+b2(a + b)^{2} = a^{2} + 2ab + b^{2}, where aa is 3x23x^{2} and bb is y3y^{3}.
  2. Calculate Terms: Apply the binomial expansion to the expression: \newlineegin{equation}(33x^{22} + y^{33})^{22} = (33x^{22})^{22} + 22 \cdot (33x^{22}) \cdot (y^{33}) + (y^{33})^{22}.\newlineegin{equation}
  3. Combine Results: Calculate each term separately:\newline(3x2)2=9x4(3x^{2})^{2} = 9x^{4} (since (32)(x22)=9x4(3^{2})\cdot(x^{2\cdot2}) = 9x^{4}),\newline2(3x2)(y3)=6x2y32\cdot(3x^{2})\cdot(y^{3}) = 6x^{2}y^{3} (since 23x2y3=6x2y32\cdot3\cdot x^{2}\cdot y^{3} = 6x^{2}y^{3}),\newline(y3)2=y6(y^{3})^{2} = y^{6} (since (y3)2=y32=y6(y^{3})^{2} = y^{3\cdot2} = y^{6}).
  4. Combine Results: Calculate each term separately:\newline(3x2)2=9x4(3x^{2})^{2} = 9x^{4} (since (32)(x22)=9x4(3^{2})\cdot(x^{2\cdot2}) = 9x^{4}),\newline2(3x2)(y3)=6x2y32\cdot(3x^{2})\cdot(y^{3}) = 6x^{2}y^{3} (since 23x2y3=6x2y32\cdot3\cdot x^{2}\cdot y^{3} = 6x^{2}y^{3}),\newline(y3)2=y6(y^{3})^{2} = y^{6} (since (y3)2=y32=y6(y^{3})^{2} = y^{3\cdot2} = y^{6}).Combine the results from Step 33 to get the final simplified expression:\newline(3x2+y3)2=9x4+6x2y3+y6(3x^{2} + y^{3})^{2} = 9x^{4} + 6x^{2}y^{3} + y^{6}.

More problems from Relationship between squares and square roots