Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the following quadratic equation, find the discriminant.

-x^(2)+4x+11=8x-1
Answer:

For the following quadratic equation, find the discriminant.\newlinex2+4x+11=8x1 -x^{2}+4 x+11=8 x-1 \newlineAnswer:

Full solution

Q. For the following quadratic equation, find the discriminant.\newlinex2+4x+11=8x1 -x^{2}+4 x+11=8 x-1 \newlineAnswer:
  1. Rearrange equation: Bring all terms to one side of the equation to get it into standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0.\newlineWe start by subtracting 8x8x and adding 11 to both sides of the equation.\newlinex2+4x+118x+1=8x18x+1-x^2 + 4x + 11 - 8x + 1 = 8x - 1 - 8x + 1\newlineThis simplifies to:\newlinex24x+12=0-x^2 - 4x + 12 = 0
  2. Identify coefficients: Identify the coefficients aa, bb, and cc in the standard quadratic form.\newlineFrom the equation x24x+12=0-x^2 - 4x + 12 = 0, we can see that:\newlinea=1a = -1, b=4b = -4, and c=12c = 12
  3. Calculate discriminant: Use the discriminant formula to find the discriminant of the quadratic equation.\newlineThe discriminant DD is given by D=b24acD = b^2 - 4ac.\newlinePlugging in the values of aa, bb, and cc, we get:\newlineD=(4)24(1)(12)D = (-4)^2 - 4(-1)(12)
  4. Calculate discriminant: Use the discriminant formula to find the discriminant of the quadratic equation.\newlineThe discriminant DD is given by D=b24acD = b^2 - 4ac.\newlinePlugging in the values of aa, bb, and cc, we get:\newlineD=(4)24(1)(12)D = (-4)^2 - 4(-1)(12)Calculate the discriminant.\newlineD=164(1)(12)D = 16 - 4(-1)(12)\newlineD=16+48D = 16 + 48\newlineD=64D = 64

More problems from Solve exponential equations by rewriting the base