Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the following quadratic equation, find the discriminant.

-3x^(2)-18 x-72=-2x^(2)
Answer:

For the following quadratic equation, find the discriminant.\newline3x218x72=2x2 -3 x^{2}-18 x-72=-2 x^{2} \newlineAnswer:

Full solution

Q. For the following quadratic equation, find the discriminant.\newline3x218x72=2x2 -3 x^{2}-18 x-72=-2 x^{2} \newlineAnswer:
  1. Simplify Quadratic Equation: First, we need to simplify the quadratic equation by moving all terms to one side to get it into standard form ax2+bx+c=0ax^2 + bx + c = 0.
    3x218x72=2x2-3x^2 - 18x - 72 = -2x^2
    Add 2x22x^2 to both sides to combine like terms.
    3x2+2x218x72=0-3x^2 + 2x^2 - 18x - 72 = 0
  2. Combine Like Terms: Now, we simplify the equation further by combining the x2x^2 terms.\newline(3x2+2x2)18x72=0(-3x^2 + 2x^2) - 18x - 72 = 0\newline1x218x72=0-1x^2 - 18x - 72 = 0
  3. Standard Form: We now have the quadratic equation in standard form, which is:\newline1x218x72=0-1x^2 - 18x - 72 = 0\newlineTo find the discriminant of a quadratic equation in the form ax2+bx+c=0ax^2 + bx + c = 0, we use the formula b24acb^2 - 4ac.
  4. Identify Coefficients: Identify the coefficients aa, bb, and cc from the equation 1x218x72=0-1x^2 - 18x - 72 = 0.a=1a = -1, b=18b = -18, c=72c = -72
  5. Substitute Values: Substitute the values of aa, bb, and cc into the discriminant formula.Discriminant=b24ac\text{Discriminant} = b^2 - 4acDiscriminant=(18)24(1)(72)\text{Discriminant} = (-18)^2 - 4(-1)(-72)
  6. Calculate Discriminant: Calculate the discriminant.\newlineDiscriminant = 3244(1)(72)324 - 4(1)(72)\newlineDiscriminant = 324288324 - 288
  7. Final Result: Finish the calculation to find the value of the discriminant.\newlineDiscriminant = 324288324 - 288\newlineDiscriminant = 3636

More problems from Solve exponential equations by rewriting the base