Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the following quadratic equation, find the discriminant.

3x^(2)+42 x+74=6x-7
Answer:

For the following quadratic equation, find the discriminant.\newline3x2+42x+74=6x7 3 x^{2}+42 x+74=6 x-7 \newlineAnswer:

Full solution

Q. For the following quadratic equation, find the discriminant.\newline3x2+42x+74=6x7 3 x^{2}+42 x+74=6 x-7 \newlineAnswer:
  1. Rearrange equation: Bring all terms to one side of the equation to get it into standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0.
    3x2+42x+746x+7=03x^2 + 42x + 74 - 6x + 7 = 0
    Combine like terms.
    3x2+(42x6x)+(74+7)=03x^2 + (42x - 6x) + (74 + 7) = 0
    3x2+36x+81=03x^2 + 36x + 81 = 0
  2. Identify coefficients: Identify the coefficients aa, bb, and cc from the standard form of the quadratic equation.a=3a = 3, b=36b = 36, c=81c = 81
  3. Use discriminant formula: Use the discriminant formula for a quadratic equation, which is b24acb^2 - 4ac. Discriminant (DD) = b24acb^2 - 4ac
  4. Substitute values: Substitute the identified values into the discriminant formula.\newlineD=3624(3)(81)D = 36^2 - 4(3)(81)
  5. Calculate discriminant: Calculate the discriminant.\newlineD=12964(3)(81)D = 1296 - 4(3)(81)\newlineD=1296972D = 1296 - 972\newlineD=324D = 324

More problems from Solve exponential equations by rewriting the base