Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the following quadratic equation, find the discriminant.

-11x^(2)+90 x-160=-6x^(2)
Answer:

For the following quadratic equation, find the discriminant.\newline11x2+90x160=6x2 -11 x^{2}+90 x-160=-6 x^{2} \newlineAnswer:

Full solution

Q. For the following quadratic equation, find the discriminant.\newline11x2+90x160=6x2 -11 x^{2}+90 x-160=-6 x^{2} \newlineAnswer:
  1. Simplify Quadratic Equation: First, we need to simplify the quadratic equation by moving all terms to one side of the equation.\newline11x2+90x160=6x2-11x^{2} + 90x - 160 = -6x^{2}\newlineAdd 6x26x^{2} to both sides to combine like terms.\newline11x2+6x2+90x160=0-11x^{2} + 6x^{2} + 90x - 160 = 0\newline5x2+90x160=0-5x^{2} + 90x - 160 = 0
  2. Find Discriminant: Now that we have the simplified quadratic equation in the form ax2+bx+c=0ax^{2} + bx + c = 0, we can find the discriminant using the formula b24acb^{2} - 4ac. For our equation, a=5a = -5, b=90b = 90, and c=160c = -160.
  3. Calculate Discriminant: Calculate the discriminant using the values of aa, bb, and cc.\newlineDiscriminant (DD) = b24acb^{2} - 4ac\newlineD=9024(5)(160)D = 90^{2} - 4(-5)(-160)
  4. Perform Calculations: Perform the calculations.\newlineD=81004(5)(160)D = 8100 - 4(-5)(-160)\newlineD=8100(20)(160)D = 8100 - (20)(160)\newlineD=81003200D = 8100 - 3200
  5. Subtract to Find Value: Subtract 32003200 from 81008100 to find the value of the discriminant.\newlineD=81003200D = 8100 - 3200\newlineD=4900D = 4900

More problems from Transformations of functions