Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For all integers x>0, let f(x)f(x) be defined as f(x)=f(x1)(1)xf(x)=\frac{f(x-1)}{(-1)^x}. If f(1)=1f(1)=1, which of the following statement is correct for the values of f(x)f(x)?\newlineA) The values of f(x)f(x) for all even values of xx is the same.\newlineB) The value of f(x)f(x) for all odd values of xx is the same.\newlineC) The value of f(x)f(x) for all even values is f(x)f(x)00 and for all odd values is f(x)f(x)11\newlineD) The value of f(x)f(x) is either f(x)f(x)00 or f(x)f(x)11

Full solution

Q. For all integers x>0x>0, let f(x)f(x) be defined as f(x)=f(x1)(1)xf(x)=\frac{f(x-1)}{(-1)^x}. If f(1)=1f(1)=1, which of the following statement is correct for the values of f(x)f(x)?\newlineA) The values of f(x)f(x) for all even values of xx is the same.\newlineB) The value of f(x)f(x) for all odd values of xx is the same.\newlineC) The value of f(x)f(x) for all even values is f(x)f(x)00 and for all odd values is f(x)f(x)11\newlineD) The value of f(x)f(x) is either f(x)f(x)00 or f(x)f(x)11
  1. Define Function: Define the function based on the given recursive formula and initial condition. Calculate f(2)f(2) using f(1)f(1). f(2)=f(1)/(1)2=1/1=1f(2) = f(1) / (-1)^2 = 1 / 1 = 1.
  2. Calculate f(2)f(2): Calculate f(3)f(3) using f(2)f(2). f(3)=f(2)(1)3=11=1f(3) = \frac{f(2)}{(-1)^3} = \frac{1}{-1} = -1.
  3. Calculate f(3)f(3): Calculate f(4)f(4) using f(3)f(3). f(4)=f(3)/(1)4=1/1=1f(4) = f(3) / (-1)^4 = -1 / 1 = -1.

More problems from Write two-variable inequalities: word problems