Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For all integers x>0, let f(x)f(x) be defined as f(x)=f(x1)(1)xf(x)=\frac{f(x-1)}{(-1)^x}. If f(1)=1f(1)=1, which of the following statement is correct for the values of f(x)f(x)?

Full solution

Q. For all integers x>0x>0, let f(x)f(x) be defined as f(x)=f(x1)(1)xf(x)=\frac{f(x-1)}{(-1)^x}. If f(1)=1f(1)=1, which of the following statement is correct for the values of f(x)f(x)?
  1. Understand function and initial condition: Understand the function and initial condition.\newlineGiven f(x)=f(x1)(1)xf(x) = \frac{f(x-1)}{(-1)^x} and f(1)=1f(1) = 1.\newlineWe need to find the pattern of f(x)f(x) for x > 1.
  2. Calculate f(2)f(2): Calculate f(2)f(2).f(2)=f(1)(1)2=11=1f(2) = \frac{f(1)}{(-1)^2} = \frac{1}{1} = 1
  3. Calculate f(3)f(3): Calculate f(3)f(3).f(3)=f(2)(1)3=11=1f(3) = \frac{f(2)}{(-1)^3} = \frac{1}{-1} = -1
  4. Calculate f(4)f(4): Calculate f(4)f(4).f(4)=f(3)(1)4f(4) = \frac{f(3)}{(-1)^4}=11= \frac{-1}{1}=1= -1

More problems from Evaluate an exponential function