Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
y^('') if 
x^(4)+y^(4)=16

Find y y^{\prime \prime} if x4+y4=16 x^{4}+y^{4}=16

Full solution

Q. Find y y^{\prime \prime} if x4+y4=16 x^{4}+y^{4}=16
  1. Differentiate Equation: Differentiate both sides of the equation with respect to x.\newlineGiven: x4+y4=16x^4 + y^4 = 16\newlineDifferentiate: ddx(x4)+ddx(y4)=ddx(16)\frac{d}{dx}(x^4) + \frac{d}{dx}(y^4) = \frac{d}{dx}(16)\newlineUsing the chain rule on y4y^4: 4x3+4y3dydx=04x^3 + 4y^3 \frac{dy}{dx} = 0
  2. Solve for dy/dx: Solve for dydx\frac{dy}{dx} (first derivative of y).\newlineRearrange the differentiated equation: 4y3dydx=4x34y^3 \frac{dy}{dx} = -4x^3\newlinedydx=x3y3\frac{dy}{dx} = -\frac{x^3}{y^3}
  3. Second Derivative of y: Differentiate dydx\frac{dy}{dx} again to find d2ydx2\frac{d^2y}{dx^2} (second derivative of y).\newlineDifferentiate: ddx(x3y3)\frac{d}{dx}\left(-\frac{x^3}{y^3}\right)\newlineUsing the quotient rule: d2ydx2=3x2y3(x3)(3y2)dydxy6\frac{d^2y}{dx^2} = \frac{-3x^2y^3 - (-x^3)(3y^2)\frac{dy}{dx}}{y^6}\newlineSubstitute dydx=x3y3\frac{dy}{dx} = -\frac{x^3}{y^3} into the equation.\newlined2ydx2=3x2y3+3x3y2(x3y3)y6\frac{d^2y}{dx^2} = \frac{-3x^2y^3 + 3x^3y^2 \left(-\frac{x^3}{y^3}\right)}{y^6}\newlineSimplify: d2ydx2=3x2y33x6y6\frac{d^2y}{dx^2} = \frac{-3x^2y^3 - 3x^6}{y^6}

More problems from Composition of linear and quadratic functions: find a value