Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find `x` value from the equation \newline3(72x)=5(4x+11)3^{(7-2x)}=5^{(4x+11)}

Full solution

Q. Find `x` value from the equation \newline3(72x)=5(4x+11)3^{(7-2x)}=5^{(4x+11)}
  1. Take Logarithm: Take the natural logarithm of both sides of the equation to utilize the property of logarithms that allows us to bring down the exponents.\newlineln(372x)=ln(54x+11)\ln(3^{7-2x}) = \ln(5^{4x+11})
  2. Apply Property: Apply the logarithmic property ln(ab)=bln(a)\ln(a^b) = b\cdot\ln(a) to both sides.\newline(72x)ln(3)=(4x+11)ln(5)(7-2x)\cdot\ln(3) = (4x+11)\cdot\ln(5)
  3. Distribute Logarithms: Distribute the natural logarithms on both sides.\newline7ln(3)2xln(3)=4xln(5)+11ln(5)7\ln(3) - 2x\ln(3) = 4x\ln(5) + 11\ln(5)
  4. Rearrange Equation: Rearrange the equation to group like terms and isolate the variable xx on one side.\newline2xln(3)4xln(5)=11ln(5)7ln(3)-2x\ln(3) - 4x\ln(5) = 11\ln(5) - 7\ln(3)
  5. Factor Out X: Factor out the xx on the left side of the equation.x(2ln(3)4ln(5))=11ln(5)7ln(3)x*(-2*\ln(3) - 4*\ln(5)) = 11*\ln(5) - 7*\ln(3)
  6. Divide by Coefficient: Divide both sides by the coefficient of xx to solve for xx.x=11ln(5)7ln(3)2ln(3)4ln(5)x = \frac{11\ln(5) - 7\ln(3)}{-2\ln(3) - 4\ln(5)}
  7. Calculate Value: Calculate the value of xx using the values of natural logarithms.\newlinex11ln(5)7ln(3)2ln(3)4ln(5)x \approx \frac{11\cdot\ln(5) - 7\cdot\ln(3)}{-2\cdot\ln(3) - 4\cdot\ln(5)}\newlinex111.6094471.0986121.0986141.60944x \approx \frac{11\cdot1.60944 - 7\cdot1.09861}{-2\cdot1.09861 - 4\cdot1.60944}\newlinex17.703847.689272.197226.43776x \approx \frac{17.70384 - 7.68927}{-2.19722 - 6.43776}\newlinex10.014578.63498x \approx \frac{10.01457}{-8.63498}\newlinex1.1598x \approx -1.1598