Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of a sphere with a radius of 4 feet.
Leave pi
(A) 341.33 pift^(3)
(B) 16 pift^(3)
(C) 21.33 pift^(3)
(D) 85.33 pift^(3)

Find the volume of a sphere with a radius of 44 feet.\newlineLeave π \pi \newline(A) 341.33πft3 341.33 \pi \mathrm{ft}^{3} \newline(B) 16πft3 16 \pi \mathrm{ft}^{3} \newline(C) 21.33πft3 21.33 \pi \mathrm{ft}^{3} \newline(D) 85.33πft3 85.33 \pi \mathrm{ft}^{3}

Full solution

Q. Find the volume of a sphere with a radius of 44 feet.\newlineLeave π \pi \newline(A) 341.33πft3 341.33 \pi \mathrm{ft}^{3} \newline(B) 16πft3 16 \pi \mathrm{ft}^{3} \newline(C) 21.33πft3 21.33 \pi \mathrm{ft}^{3} \newline(D) 85.33πft3 85.33 \pi \mathrm{ft}^{3}
  1. Recall Volume Formula: Recall the formula for the volume of a sphere.\newlineThe formula for the volume of a sphere is given by V=43πr3V = \frac{4}{3}\pi r^3, where rr is the radius of the sphere.
  2. Substitute Given Radius: Substitute the given radius into the volume formula.\newlineGiven the radius r=4r = 4 feet, we substitute it into the formula to get V=43π(4)3V = \frac{4}{3}\pi(4)^3.
  3. Calculate Volume: Calculate the volume using the substituted values.\newlineV=43π(4)3=43π(64)=43×64×π=2563×π2563×3.14159V = \frac{4}{3}\pi(4)^3 = \frac{4}{3}\pi(64) = \frac{4}{3} \times 64 \times \pi = \frac{256}{3} \times \pi \approx \frac{256}{3} \times 3.14159
  4. Perform Multiplication: Perform the multiplication to find the volume. \newlineV2563×3.1415985.33333×3.14159268.0824V \approx \frac{256}{3} \times 3.14159 \approx 85.33333 \times 3.14159 \approx 268.0824 cubic feet

More problems from Product property of logarithms