Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of a regular hexagonal pyramid with side length 1515 meters and a lateral edge of 1717 meters.

Full solution

Q. Find the volume of a regular hexagonal pyramid with side length 1515 meters and a lateral edge of 1717 meters.
  1. Calculate Hexagonal Base Area: Step 11: Calculate the area of the hexagonal base.\newlineThe formula for the area of a regular hexagon is Area=332s2 \text{Area} = \frac{3\sqrt{3}}{2} s^2 , where s s is the side length.\newlineArea = 332×152 \frac{3\sqrt{3}}{2} \times 15^2 \newlineArea = 332×225 \frac{3\sqrt{3}}{2} \times 225 \newlineArea = 337.53 337.5\sqrt{3} square meters.
  2. Calculate Pyramid Height: Step 22: Calculate the height of the pyramid.\newlineUsing the Pythagorean theorem in the triangle formed by the height of the pyramid, half the side length of the base, and the lateral edge.\newlineLet h h be the height of the pyramid, a=1532 a = \frac{15\sqrt{3}}{2} (half the side length of the base times 3\sqrt{3}).\newline172=h2+(1532)2 17^2 = h^2 + \left(\frac{15\sqrt{3}}{2}\right)^2 \newline289=h2+(1532)2 289 = h^2 + \left(\frac{15\sqrt{3}}{2}\right)^2 \newline289=h2+97.5 289 = h^2 + 97.5 \newlineh2=191.5 h^2 = 191.5 \newlineh=191.5 h = \sqrt{191.5} \newlineh13.84 h \approx 13.84 meters.
  3. Calculate Pyramid Volume: Step 33: Calculate the volume of the pyramid.\newlineThe volume V V of a pyramid is given by V=13×Base Area×Height V = \frac{1}{3} \times \text{Base Area} \times \text{Height} .\newlineVolume = 13×337.53×13.84 \frac{1}{3} \times 337.5\sqrt{3} \times 13.84 \newlineVolume = 1554.63 1554.6\sqrt{3} cubic meters.

More problems from Volume of cubes and rectangular prisms: word problems