Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the values of 
x and 
y in the following scalar multiplication.

{:[-(1)/(3)*[[x],[-9]]=[[2],[y]]],[x=],[y=]:}

Find the values of x x and y y in the following scalar multiplication.\newline13[x9]=[2y]x=y= \begin{array}{l} -\frac{1}{3} \cdot\left[\begin{array}{c} x \\ -9 \end{array}\right]=\left[\begin{array}{l} 2 \\ y \end{array}\right] \\ x=\square \\ y=\square \end{array}

Full solution

Q. Find the values of x x and y y in the following scalar multiplication.\newline13[x9]=[2y]x=y= \begin{array}{l} -\frac{1}{3} \cdot\left[\begin{array}{c} x \\ -9 \end{array}\right]=\left[\begin{array}{l} 2 \\ y \end{array}\right] \\ x=\square \\ y=\square \end{array}
  1. Given equation: We are given the scalar multiplication equation 13×[x 9]=[2 y]-\frac{1}{3} \times \left[\begin{array}{c} x \ -9 \end{array}\right] = \left[\begin{array}{c} 2 \ y \end{array}\right]. To find the values of xx and yy, we need to multiply each element of the matrix [x 9]\left[\begin{array}{c} x \ -9 \end{array}\right] by the scalar 13-\frac{1}{3} and then equate the resulting matrix to [2 y]\left[\begin{array}{c} 2 \ y \end{array}\right].
  2. Multiplying by scalar: First, let's multiply the scalar 13-\frac{1}{3} by the element xx in the matrix. This gives us 13×x=x3-\frac{1}{3} \times x = -\frac{x}{3}.
  3. Resulting matrix: Next, we multiply the scalar 13-\frac{1}{3} by the element 9-9 in the matrix. This gives us 13×9=3-\frac{1}{3} \times -9 = 3.
  4. Equating matrices: Now we have the resulting matrix from the scalar multiplication: \left[\begin{array}{c}-\frac{x}{3}\3\end{array}\right]. We can set this equal to the matrix \left[\begin{array}{c}2\y\end{array}\right] to find the values of xx and yy.
  5. Solving for x: By equating the first elements of the matrices, we get x3=2-\frac{x}{3} = 2. To solve for xx, we multiply both sides of the equation by 3-3, which gives us x=6x = -6.
  6. Finding yy: By equating the second elements of the matrices, we get 3=y3 = y. This directly gives us the value of yy, which is y=3y = 3.

More problems from Even and odd functions