Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the value of 
c so that 
(x-2) is a factor of the polynomial 
p(x).

p(x)=x^(3)-4x^(2)+3x+c

c=

Find the value of c c so that (x2) (x-2) is a factor of the polynomial p(x) p(x) .\newlinep(x)=x34x2+3x+c p(x)=x^{3}-4 x^{2}+3 x+c \newlinec= c=

Full solution

Q. Find the value of c c so that (x2) (x-2) is a factor of the polynomial p(x) p(x) .\newlinep(x)=x34x2+3x+c p(x)=x^{3}-4 x^{2}+3 x+c \newlinec= c=
  1. Factor Theorem: If (x2)(x-2) is a factor of p(x)p(x), then p(2)p(2) must equal 00 according to the Factor Theorem.
  2. Substitute x=2x = 2: Substitute x=2x = 2 into the polynomial p(x)=x34x2+3x+cp(x) = x^3 - 4x^2 + 3x + c.\newlinep(2)=(2)34(2)2+3(2)+cp(2) = (2)^3 - 4(2)^2 + 3(2) + c
  3. Calculate p(2)p(2): Calculate the value of p(2)p(2) using the substitution from the previous step.\newlinep(2)=84(4)+3(2)+cp(2) = 8 - 4(4) + 3(2) + c\newlinep(2)=816+6+cp(2) = 8 - 16 + 6 + c
  4. Simplify expression: Simplify the expression to find the value of p(2)p(2).p(2)=8+6+cp(2) = -8 + 6 + cp(2)=2+cp(2) = -2 + c
  5. Set expression equal to 00: Since p(2)p(2) must equal 00 for (x2)(x-2) to be a factor of p(x)p(x), set the expression equal to 00 and solve for cc.\newline2+c=0-2 + c = 0
  6. Solve for cc: Add 22 to both sides of the equation to isolate cc.c=2c = 2

More problems from Composition of linear and quadratic functions: find a value