Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(w4)2(w - 4)^2

Full solution

Q. Find the square. Simplify your answer.\newline(w4)2(w - 4)^2
  1. Understand Binomial Theorem: We need to find the square of the binomial (w4)(w - 4). This is in the form of (ab)2(a - b)^2, which is a special case of the binomial theorem.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb in the binomial (w4)2(w - 4)^2. Compare (w4)2(w - 4)^2 with (ab)2(a - b)^2. a=wa = w b=4b = 4
  3. Apply Binomial Formula: Apply the square of a binomial formula to expand (w4)2(w - 4)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(w4)2=w22(w)(4)+42(w - 4)^2 = w^2 - 2(w)(4) + 4^2
  4. Simplify the Expression: Simplify w22(w)(4)+42w^2 - 2(w)(4) + 4^2.w22(w)(4)+42w^2 - 2(w)(4) + 4^2 = w2(2×4)w+4×4w^2 - (2 \times 4)w + 4 \times 4 = w28w+16w^2 - 8w + 16

More problems from Multiply two binomials: special cases