Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(v3)2(v - 3)^2

Full solution

Q. Find the square. Simplify your answer.\newline(v3)2(v - 3)^2
  1. Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.\newlineThe given expression is (v3)2(v - 3)^2, which is in the form of (ab)2(a - b)^2.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify values of aa and bb: Identify the values of aa and bb in the binomial. Compare (v3)2(v - 3)^2 with (ab)2(a - b)^2. a=va = v b=3b = 3
  3. Apply binomial square formula: Apply the square of a binomial formula to expand (v3)2(v - 3)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get: (v3)2=v22(v)(3)+32(v - 3)^2 = v^2 - 2(v)(3) + 3^2
  4. Simplify expanded expression: Simplify the expanded expression. \newlinev22(v)(3)+32v^2 - 2(v)(3) + 3^2\newline= v26v+9v^2 - 6v + 9

More problems from Multiply two binomials: special cases