Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(u4)2(u - 4)^2

Full solution

Q. Find the square. Simplify your answer.\newline(u4)2(u - 4)^2
  1. Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.\newlineThe given expression is (u4)2(u - 4)^2, which is a binomial squared. The special case formula for the square of a binomial is (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.
  2. Identify values of aa and bb: Identify the values of aa and bb in the binomial.\newlineIn the expression (u4)2(u - 4)^2, aa is uu and bb is 44. We will use these values in the special case formula.
  3. Apply binomial square formula: Apply the square of a binomial formula to expand (u4)2(u - 4)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we substitute aa with uu and bb with 44: (u4)2=u22(u)(4)+42(u - 4)^2 = u^2 - 2(u)(4) + 4^2
  4. Simplify expression: Simplify the expression by performing the operations. u22(u)(4)+42=u28u+16u^2 - 2(u)(4) + 4^2 = u^2 - 8u + 16

More problems from Multiply two binomials: special cases