Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(p4)2(p - 4)^2

Full solution

Q. Find the square. Simplify your answer.\newline(p4)2(p - 4)^2
  1. Identify Binomial and Formula: Identify the binomial to be squared and the special case formula to use.\newlineThe given expression is (p4)2(p - 4)^2, which is in the form of (ab)2(a - b)^2.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify aa and bb: Identify the values of aa and bb in the binomial.\newlineIn the expression (p4)2(p - 4)^2, compare it with (ab)2(a - b)^2 to find:\newlinea=pa = p\newlineb=4b = 4
  3. Apply Binomial Formula: Apply the square of a binomial formula to expand (p4)2(p - 4)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get: (p4)2=p22(p)(4)+42(p - 4)^2 = p^2 - 2(p)(4) + 4^2
  4. Simplify Expression: Simplify the expanded expression.\newlinep22(p)(4)+42p^2 - 2(p)(4) + 4^2\newline= p28p+16p^2 - 8p + 16

More problems from Multiply two binomials: special cases