Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(4z4)2(4z - 4)^2

Full solution

Q. Find the square. Simplify your answer.\newline(4z4)2(4z - 4)^2
  1. Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.\newlineThe given expression is (4z4)2(4z - 4)^2, which is in the form of (ab)2(a - b)^2.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify values of aa and bb: Identify the values of aa and bb in the binomial. Compare (4z4)2(4z - 4)^2 with (ab)2(a - b)^2. a=4za = 4z b=4b = 4
  3. Apply binomial square formula: Apply the square of a binomial formula to expand (4z4)2(4z - 4)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(4z4)2=(4z)22(4z)(4)+42(4z - 4)^2 = (4z)^2 - 2(4z)(4) + 4^2
  4. Simplify expanded expression: Simplify the expanded expression.\newline(4z)22(4z)(4)+42(4z)^2 - 2(4z)(4) + 4^2\newline= (4z4z)(244)z+44(4z \cdot 4z) - (2 \cdot 4 \cdot 4)z + 4 \cdot 4\newline= 16z232z+1616z^2 - 32z + 16

More problems from Multiply two binomials: special cases