Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(4z2)2(4z - 2)^2

Full solution

Q. Find the square. Simplify your answer.\newline(4z2)2(4z - 2)^2
  1. Identify Binomial & Formula: Identify the binomial to be squared and the special case formula.\newlineThe given expression is (4z2)2(4z - 2)^2, which is a binomial squared. The special case formula for the square of a binomial (ab)2(a - b)^2 is a22ab+b2a^2 - 2ab + b^2.
  2. Identify aa and bb: Identify the values of aa and bb in the binomial.\newlineIn the expression (4z2)2(4z - 2)^2, aa is 4z4z and bb is 22. We will use these values in the special case formula.
  3. Apply Special Case Formula: Apply the special case formula to expand (4z2)2(4z - 2)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we substitute aa with 4z4z and bb with 22: (4z2)2=(4z)22(4z)2+22(4z - 2)^2 = (4z)^2 - 2\cdot(4z)\cdot2 + 2^2
  4. Simplify Expression: Simplify the expression by performing the calculations.\newline(4z)22×(4z)×2+22=16z216z+4(4z)^2 - 2\times(4z)\times2 + 2^2 = 16z^2 - 16z + 4

More problems from Multiply two binomials: special cases