Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(4t+1)2(4t + 1)^2

Full solution

Q. Find the square. Simplify your answer.\newline(4t+1)2(4t + 1)^2
  1. Identify Binomial and Formula: Identify the binomial to be squared and the special case formula.\newlineThe given binomial is (4t+1)(4t + 1), and we need to find the square of this binomial. The special case formula for the square of a binomial (a+b)2(a + b)^2 is a2+2ab+b2a^2 + 2ab + b^2.
  2. Identify aa and bb: Identify the values of aa and bb in the binomial (4t+1)(4t + 1).\newlineIn the binomial (4t+1)(4t + 1), aa is 4t4t and bb is 11. We will use these values in the special case formula to expand the square of the binomial.
  3. Apply Special Case Formula: Apply the special case formula to expand (4t+1)2(4t + 1)^2. Using the formula (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, we substitute aa with 4t4t and bb with 11 to get: (4t+1)2=(4t)2+2(4t)1+12(4t + 1)^2 = (4t)^2 + 2\cdot(4t)\cdot1 + 1^2
  4. Simplify Expression: Simplify the expression by performing the calculations.\newline(4t)2+2(4t)1+12=16t2+8t+1(4t)^2 + 2\cdot(4t)\cdot1 + 1^2 = 16t^2 + 8t + 1

More problems from Multiply two binomials: special cases