Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(4n+3)2(4n + 3)^2

Full solution

Q. Find the square. Simplify your answer.\newline(4n+3)2(4n + 3)^2
  1. Special Case Identification: We are asked to find the square of the binomial (4n+3)(4n + 3). This means we need to calculate (4n+3)2(4n + 3)^2.\newlineWhich special case applies here?\newline(4n+3)2(4n + 3)^2 is in the form of (a+b)2(a + b)^2.\newlineSpecial case: (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
  2. Values of aa and bb: Identify the values of aa and bb.\newlineCompare (4n+3)2(4n + 3)^2 with (a+b)2(a + b)^2.\newlinea = 4n4n\newlineb = 33
  3. Application of Binomial Formula: Apply the square of a binomial formula to expand (4n+3)2(4n + 3)^2.(a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2(4n+3)2=(4n)2+2(4n)(3)+32(4n + 3)^2 = (4n)^2 + 2(4n)(3) + 3^2
  4. Simplification: Simplify (4n)2+2(4n)(3)+32.(4n)^2 + 2(4n)(3) + 3^2.(4n)2+2(4n)(3)+32(4n)^2 + 2(4n)(3) + 3^2=(4n×4n)+(2×4×3)n+3×3= (4n \times 4n) + (2 \times 4 \times 3)n + 3 \times 3=16n2+24n+9= 16n^2 + 24n + 9

More problems from Multiply two binomials: special cases