Identify values of a and b: Identify the values of a and b in the binomial (4f+1)2. Here, a=4f and b=1.
Apply binomial square formula: Apply the square of a binomial formula to expand (4f+1)2. Using the formula (a+b)2=a2+2ab+b2, we get: (4f+1)2=(4f)2+2⋅(4f)⋅1+12.
Simplify each term: Simplify each term in the expansion.(4f)2=16f2 (since 4f×4f=16f2),2×(4f)×1=8f (since 2×4f×1=8f),12=1 (since 1×1=1).
Combine simplified terms: Combine the simplified terms to get the final answer.(4f+1)2=16f2+8f+1.
More problems from Multiply two binomials: special cases