Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(4b2)2(4b - 2)^2

Full solution

Q. Find the square. Simplify your answer.\newline(4b2)2(4b - 2)^2
  1. Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.\newlineThe given binomial is (4b2)(4b - 2), and we need to square it. The special case formula for the square of a binomial is (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.
  2. Identify values of aa and bb: Identify the values of aa and bb in the binomial (4b2)(4b - 2). In the binomial (4b2)(4b - 2), aa is 4b4b and bb is 22.
  3. Apply binomial square formula: Apply the square of a binomial formula to expand (4b2)2(4b - 2)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get: (4b2)2=(4b)22(4b)2+(2)2(4b - 2)^2 = (4b)^2 - 2\cdot(4b)\cdot2 + (2)^2
  4. Simplify each term: Simplify each term in the expansion.\newline(4b)2=16b2(4b)^2 = 16b^2 (since 4b×4b=16b24b \times 4b = 16b^2)\newline2×(4b)×2=16b2\times(4b)\times2 = 16b (since 2×4b×2=16b2 \times 4b \times 2 = 16b)\newline(2)2=4(2)^2 = 4 (since 2×2=42 \times 2 = 4)\newlineSo, (4b2)2=16b216b+4(4b - 2)^2 = 16b^2 - 16b + 4

More problems from Multiply two binomials: special cases