Identify a and b: We are asked to find the square of the binomial (3y−3). This is in the form of (a−b)2, which is a special case of binomial expansion.Special case: (a−b)2=a2−2ab+b2
Apply binomial formula: Identify the values of a and b in the binomial (3y−3). Compare (3y−3)2 with (a−b)2. a=3yb=3
Simplify the expression: Apply the square of a binomial formula to expand (3y−3)2.(a−b)2=a2−2ab+b2(3y−3)2=(3y)2−2(3y)(3)+(3)2
Simplify the expression: Apply the square of a binomial formula to expand (3y−3)2.(a−b)2=a2−2ab+b2(3y−3)2=(3y)2−2(3y)(3)+(3)2Simplify the expression (3y)2−2(3y)(3)+(3)2.(3y)2−2(3y)(3)+(3)2=(3y×3y)−(2×3×3)y+3×3=9y2−18y+9
More problems from Multiply two binomials: special cases