Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3y3)2(3y - 3)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3y3)2(3y - 3)^2
  1. Identify aa and bb: We are asked to find the square of the binomial (3y3)(3y - 3). This is in the form of (ab)2(a - b)^2, which is a special case of binomial expansion.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Apply binomial formula: Identify the values of aa and bb in the binomial (3y3)(3y - 3). Compare (3y3)2(3y - 3)^2 with (ab)2(a - b)^2. a=3ya = 3y b=3b = 3
  3. Simplify the expression: Apply the square of a binomial formula to expand (3y3)2(3y - 3)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(3y3)2=(3y)22(3y)(3)+(3)2(3y - 3)^2 = (3y)^2 - 2(3y)(3) + (3)^2
  4. Simplify the expression: Apply the square of a binomial formula to expand (3y3)2(3y - 3)^2.(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2(3y3)2=(3y)22(3y)(3)+(3)2(3y - 3)^2 = (3y)^2 - 2(3y)(3) + (3)^2Simplify the expression (3y)22(3y)(3)+(3)2(3y)^2 - 2(3y)(3) + (3)^2.(3y)22(3y)(3)+(3)2(3y)^2 - 2(3y)(3) + (3)^2=(3y×3y)(2×3×3)y+3×3= (3y \times 3y) - (2 \times 3 \times 3)y + 3 \times 3=9y218y+9= 9y^2 - 18y + 9

More problems from Multiply two binomials: special cases