Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3w+2)2(3w + 2)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3w+2)2(3w + 2)^2
  1. Identify Expression and Identity: Identify the expression to be squared and the relevant algebraic identity.\newlineThe expression to be squared is (3w+2)(3w + 2). The relevant algebraic identity for squaring a binomial is (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2.
  2. Determine 'a' and 'b': Determine the values of 'a' and 'b' in the identity.\newlineIn the expression (3w+2)(3w + 2), 'a' is 3w3w and 'b' is 22.
  3. Apply Algebraic Identity: Apply the algebraic identity to the expression (3w+2)2(3w + 2)^2. Using the identity (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, we get: (3w+2)2=(3w)2+2(3w)(2)+(2)2(3w + 2)^2 = (3w)^2 + 2\cdot(3w)\cdot(2) + (2)^2.
  4. Calculate Expanded Expression: Calculate each term of the expanded expression.\newline(3w)2=9w2(3w)^2 = 9w^2,\newline2(3w)(2)=12w2\cdot(3w)\cdot(2) = 12w,\newline(2)2=4(2)^2 = 4.
  5. Combine Calculated Terms: Combine the calculated terms to get the final simplified expression. 9w2+12w+49w^2 + 12w + 4 is the simplified form of (3w+2)2(3w + 2)^2.

More problems from Multiply two binomials: special cases