Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.The binomial to be squared is (3v+4), and the special case formula for the square of a binomial is (a+b)2=a2+2ab+b2.
Determine values of 'a' and 'b': Determine the values of 'a' and 'b' in the binomial.In the expression (3v+4), 'a' is 3v and 'b' is 4.
Apply binomial formula: Apply the square of a binomial formula to expand (3v+4)2. Using the formula (a+b)2=a2+2ab+b2, we get (3v+4)2=(3v)2+2⋅(3v)⋅(4)+(4)2.
Simplify each term: Simplify each term in the expansion.(3v)2=9v2, 2⋅(3v)⋅(4)=24v, and (4)2=16.So, (3v+4)2=9v2+24v+16.
More problems from Multiply two binomials: special cases