Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3v3)2(3v - 3)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3v3)2(3v - 3)^2
  1. Identify binomial and formula: Identify the binomial to be squared and the special case formula.\newlineThe given binomial is (3v3)(3v - 3), and we need to square it. The special case formula for the square of a binomial is (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.
  2. Identify values of a and b: Identify the values of a and b in the binomial.\newlineIn the binomial (3v3)(3v - 3), aa is 3v3v and bb is 33.
  3. Apply binomial formula: Apply the square of a binomial formula to expand (3v3)2(3v - 3)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get: (3v3)2=(3v)22(3v)(3)+(3)2(3v - 3)^2 = (3v)^2 - 2(3v)(3) + (3)^2
  4. Simplify expression: Simplify the expression by performing the calculations.\newline(3v)22(3v)(3)+(3)2(3v)^2 - 2(3v)(3) + (3)^2\newline=9v22×3×3v+9= 9v^2 - 2 \times 3 \times 3v + 9\newline=9v218v+9= 9v^2 - 18v + 9

More problems from Multiply two binomials: special cases