Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.The binomial to be squared is (3u−3), and it is in the form of (a−b)2.Special case: (a−b)2=a2−2ab+b2
Identify values of a and b: Identify the values of a and b in the binomial (3u−3). Compare (3u−3)2 with (a−b)2. a=3ub=3
Apply binomial square formula: Apply the square of a binomial formula to expand (3u−3)2.(a−b)2=a2−2ab+b2(3u−3)2=(3u)2−2(3u)(3)+(3)2
Simplify the expression: Simplify the expression (3u)2−2(3u)(3)+(3)2.(3u)2−2(3u)(3)+(3)2=(3u×3u)−(2×3×3)u+3×3=9u2−18u+9
More problems from Multiply two binomials: special cases