Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3u3)2(3u - 3)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3u3)2(3u - 3)^2
  1. Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.\newlineThe binomial to be squared is (3u3)(3u - 3), and it is in the form of (ab)2(a - b)^2.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify values of aa and bb: Identify the values of aa and bb in the binomial (3u3)(3u - 3). Compare (3u3)2(3u - 3)^2 with (ab)2(a - b)^2. a=3ua = 3u b=3b = 3
  3. Apply binomial square formula: Apply the square of a binomial formula to expand (3u3)2(3u - 3)^2.(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2(3u3)2=(3u)22(3u)(3)+(3)2(3u - 3)^2 = (3u)^2 - 2(3u)(3) + (3)^2
  4. Simplify the expression: Simplify the expression (3u)22(3u)(3)+(3)2.(3u)^2 - 2(3u)(3) + (3)^2.(3u)22(3u)(3)+(3)2(3u)^2 - 2(3u)(3) + (3)^2=(3u×3u)(2×3×3)u+3×3= (3u \times 3u) - (2 \times 3 \times 3)u + 3 \times 3=9u218u+9= 9u^2 - 18u + 9

More problems from Multiply two binomials: special cases