Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3u2)2(3u - 2)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3u2)2(3u - 2)^2
  1. Identify aa and bb: We are asked to find the square of the binomial (3u2)(3u - 2). This is in the form of (ab)2(a - b)^2, which is a special case of binomial expansion.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Apply binomial formula: Identify the values of aa and bb in the binomial (3u2)(3u - 2). Compare (3u2)2(3u - 2)^2 with (ab)2(a - b)^2. a=3ua = 3u b=2b = 2
  3. Simplify the expression: Apply the square of a binomial formula to expand (3u2)2(3u - 2)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(3u2)2=(3u)22(3u)(2)+22(3u - 2)^2 = (3u)^2 - 2(3u)(2) + 2^2
  4. Simplify the expression: Apply the square of a binomial formula to expand (3u2)2(3u - 2)^2.(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2(3u2)2=(3u)22(3u)(2)+22(3u - 2)^2 = (3u)^2 - 2(3u)(2) + 2^2Simplify the expression (3u)22(3u)(2)+22(3u)^2 - 2(3u)(2) + 2^2.(3u)22(3u)(2)+22(3u)^2 - 2(3u)(2) + 2^2=(3u×3u)(2×3×2)u+2×2= (3u \times 3u) - (2 \times 3 \times 2)u + 2 \times 2=9u212u+4= 9u^2 - 12u + 4

More problems from Multiply two binomials: special cases