Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.The binomial to be squared is 3u+2, and the special case formula for the square of a binomial a+b)2is$a2+2ab+b2.
Determine values of a and b: Determine the values of a and b in the binomial.In the expression (3u+2), a is 3u and b is 2.
Apply binomial formula: Apply the square of a binomial formula to expand (3u+2)2. Using the formula (a+b)2=a2+2ab+b2, we get (3u+2)2=(3u)2+2⋅(3u)⋅(2)+(2)2.
Simplify each term: Simplify each term in the expansion.(3u)2=9u2, 2⋅(3u)⋅(2)=12u, and (2)2=4.So, (3u+2)2=9u2+12u+4.
More problems from Multiply two binomials: special cases