Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3q+3)2(3q + 3)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3q+3)2(3q + 3)^2
  1. Identify Binomial and Formula: Identify the binomial to be squared and the special case formula to use.\newlineThe given binomial is (3q+3)(3q + 3), and we need to square it. The special case formula for the square of a binomial (a+b)2(a + b)^2 is a2+2ab+b2a^2 + 2ab + b^2.
  2. Identify aa and bb: Identify the values of aa and bb in the binomial. In the binomial (3q+3)(3q + 3), aa is 3q3q and bb is 33.
  3. Apply Binomial Formula: Apply the square of a binomial formula to expand (3q+3)2(3q + 3)^2. Using the formula (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, we get: (3q+3)2=(3q)2+2(3q)(3)+(3)2(3q + 3)^2 = (3q)^2 + 2(3q)(3) + (3)^2
  4. Simplify Each Term: Simplify each term in the expansion.\newline(3q)2=9q2(3q)^2 = 9q^2 (since 3q×3q=9q23q \times 3q = 9q^2)\newline2(3q)(3)=18q2(3q)(3) = 18q (since 2×3q×3=18q2 \times 3q \times 3 = 18q)\newline(3)2=9(3)^2 = 9 (since 3×3=93 \times 3 = 9)
  5. Combine Simplified Terms: Combine the simplified terms to get the final answer.\newline(3q+3)2=9q2+18q+9(3q + 3)^2 = 9q^2 + 18q + 9

More problems from Multiply two binomials: special cases