Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3m4)2(3m - 4)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3m4)2(3m - 4)^2
  1. Identify binomial and formula: Identify the binomial to be squared and the special case formula.\newlineThe given expression is (3m4)2(3m - 4)^2, which is a binomial squared. The special case formula for the square of a binomial is (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.
  2. Identify values of aa and bb: Identify the values of aa and bb in the binomial.\newlineIn the expression (3m4)2(3m - 4)^2, aa is 3m3m and bb is 44. We will use these values in the special case formula.
  3. Apply special case formula: Apply the special case formula to the binomial.\newlineUsing the values of aa and bb, we expand (3m4)2(3m - 4)^2 using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.\newline(3m4)2=(3m)22(3m)4+42(3m - 4)^2 = (3m)^2 - 2\cdot(3m)\cdot4 + 4^2
  4. Simplify the expression: Simplify the expression.\newlineNow we simplify each term:\newline(3m)2=9m2(3m)^2 = 9m^2 (since (3m)(3m)=9m2(3m)*(3m) = 9m^2)\newline2(3m)4=24m2*(3m)*4 = 24m (since 234=242*3*4 = 24)\newline42=164^2 = 16 (since 44=164*4 = 16)\newlineSo, (3m4)2=9m224m+16(3m - 4)^2 = 9m^2 - 24m + 16

More problems from Multiply two binomials: special cases