Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.The binomial to be squared is (3k+4), and it is in the form of (a+b)2.Special case: (a+b)2=a2+2ab+b2
Identify values of a and b: Identify the values of a and b in the binomial (3k+4). Compare (3k+4)2 with (a+b)2. a=3kb=4
Apply binomial formula: Apply the square of a binomial formula to expand (3k+4)2. Using the formula (a+b)2=a2+2ab+b2, we get: (3k+4)2=(3k)2+2(3k)(4)+42
Simplify expansion: Simplify each term in the expansion of (3k+4)2. (3k)2+2(3k)(4)+42 = (3k×3k)+(2×3×4)k+(4×4) = 9k2+24k+16
More problems from Multiply two binomials: special cases