Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.

(3k+4)^(2)

Find the square. Simplify your answer.\newline(3k+4)2 (3 k+4)^{2}

Full solution

Q. Find the square. Simplify your answer.\newline(3k+4)2 (3 k+4)^{2}
  1. Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.\newlineThe binomial to be squared is (3k+4)(3k + 4), and it is in the form of (a+b)2(a + b)^2.\newlineSpecial case: (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
  2. Identify values of aa and bb: Identify the values of aa and bb in the binomial (3k+4)(3k + 4). Compare (3k+4)2(3k + 4)^2 with (a+b)2(a + b)^2. a=3ka = 3k b=4b = 4
  3. Apply binomial formula: Apply the square of a binomial formula to expand (3k+4)2(3k + 4)^2. Using the formula (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, we get: (3k+4)2=(3k)2+2(3k)(4)+42(3k + 4)^2 = (3k)^2 + 2(3k)(4) + 4^2
  4. Simplify expansion: Simplify each term in the expansion of (3k+4)2(3k + 4)^2.
    (3k)2+2(3k)(4)+42(3k)^2 + 2(3k)(4) + 4^2
    = (3k×3k)+(2×3×4)k+(4×4)(3k \times 3k) + (2 \times 3 \times 4)k + (4 \times 4)
    = 9k2+24k+169k^2 + 24k + 16

More problems from Multiply two binomials: special cases