Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3c1)2(3c - 1)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3c1)2(3c - 1)^2
  1. Identify Binomial and Formula: Identify the binomial to be squared and the special case formula.\newlineThe given expression is (3c1)2(3c - 1)^2, which is a binomial squared. The special case formula for the square of a binomial is (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.
  2. Identify aa and bb: Identify the values of aa and bb in the binomial.\newlineIn the expression (3c1)2(3c - 1)^2, aa is 3c3c and bb is 11.
  3. Apply Binomial Formula: Apply the square of a binomial formula to expand (3c1)2(3c - 1)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get: (3c1)2=(3c)22(3c)1+12(3c - 1)^2 = (3c)^2 - 2\cdot(3c)\cdot1 + 1^2
  4. Simplify Expression: Simplify the expanded expression.\newline(3c)22×(3c)×1+12(3c)^2 - 2\times(3c)\times 1 + 1^2\newline= 9c26c+19c^2 - 6c + 1

More problems from Multiply two binomials: special cases