Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(3b2)2(3b - 2)^2

Full solution

Q. Find the square. Simplify your answer.\newline(3b2)2(3b - 2)^2
  1. Identify values of aa and bb: Identify the values of aa and bb. In the expression (3b2)2(3b - 2)^2, aa is 3b3b and bb is 22.
  2. Apply binomial square formula: Apply the square of a binomial formula to expand (3b2)2(3b - 2)^2. Using the identity (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get: (3b2)2=(3b)22(3b)2+(2)2(3b - 2)^2 = (3b)^2 - 2\cdot(3b)\cdot2 + (2)^2
  3. Simplify terms in expansion: Simplify each term in the expansion.\newline(3b)2=9b2(3b)^2 = 9b^2 (since 3b×3b=9b23b \times 3b = 9b^2)\newline2×(3b)×2=12b-2\times(3b)\times2 = -12b (since 2×3b×2=12b-2 \times 3b \times 2 = -12b)\newline(2)2=4(2)^2 = 4 (since 2×2=42 \times 2 = 4)
  4. Combine simplified terms: Combine the simplified terms to get the final answer.\newline(3b2)2=9b212b+4(3b - 2)^2 = 9b^2 - 12b + 4

More problems from Multiply two binomials: special cases