Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(2x4)2(2x - 4)^2

Full solution

Q. Find the square. Simplify your answer.\newline(2x4)2(2x - 4)^2
  1. Identify values of aa and bb: Identify the values of aa and bb in the binomial (2x4)(2x - 4). In the expression (2x4)2(2x - 4)^2, aa is 2x2x and bb is 44.
  2. Apply binomial square formula: Apply the square of a binomial formula to expand (2x4)2(2x - 4)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get: (2x4)2=(2x)22(2x)4+42(2x - 4)^2 = (2x)^2 - 2\cdot(2x)\cdot4 + 4^2
  3. Simplify expansion terms: Simplify each term in the expansion.\newline(2x)2=4x2(2x)^2 = 4x^2 (since 2x×2x=4x22x \times 2x = 4x^2)\newline2×(2x)×4=16x2\times(2x)\times4 = 16x (since 2×2x×4=16x2 \times 2x \times 4 = 16x)\newline42=164^2 = 16 (since 4×4=164 \times 4 = 16)
  4. Combine simplified terms: Combine the simplified terms to get the final answer.\newline(2x4)2=4x216x+16(2x - 4)^2 = 4x^2 - 16x + 16

More problems from Multiply two binomials: special cases