Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.The binomial to be squared is (2t+2), and it is in the form of (a+b)2.Special case: (a+b)2=a2+2ab+b2
Determine values of a and b: Determine the values of a and b in the binomial (2t+2). Comparing (2t+2) with (a+b), we find that a=2t and b=2.
Apply binomial square formula: Apply the square of a binomial formula to expand (2t+2)2. Using the formula (a+b)2=a2+2ab+b2, we get: (2t+2)2=(2t)2+2(2t)(2)+22
Simplify expression: Simplify the expression (2t)2+2(2t)(2)+22.(2t)2+2(2t)(2)+22=(2t⋅2t)+(2⋅2⋅2)t+2⋅2=4t2+8t+4
More problems from Multiply two binomials: special cases