Identify values of a and b: Identify the values of a and b in the binomial (2s−1)2. In this case, a=2s and b=1.
Apply binomial square formula: Apply the square of a binomial formula to expand (2s−1)2. Using the formula (a−b)2=a2−2ab+b2, we get: (2s−1)2=(2s)2−2⋅(2s)⋅1+12
Simplify each term: Simplify each term in the expansion.(2s)2=4s2 (since 2s×2s=4s2)−2×(2s)×1=−4s (since 2×2s×1=4s)12=1 (since 1×1=1)
Combine simplified terms: Combine the simplified terms to get the final answer.(2s−1)2=4s2−4s+1
More problems from Multiply two binomials: special cases