Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(2r3)2(2r - 3)^2

Full solution

Q. Find the square. Simplify your answer.\newline(2r3)2(2r - 3)^2
  1. Special Case Identification: We are asked to find the square of the binomial (2r3)(2r - 3). This means we need to calculate (2r3)2(2r - 3)^2. Which special case applies here? (2r3)2(2r - 3)^2 is in the form of (ab)2(a - b)^2. Special case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Values of a and b: Identify the values of aa and bb.\newlineCompare (2r3)2(2r - 3)^2 with (ab)2(a - b)^2.\newlinea=2ra = 2r\newlineb=3b = 3
  3. Application of Formula: Apply the square of a binomial formula to expand (2r3)2(2r - 3)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(2r3)2=(2r)22(2r)(3)+(3)2(2r - 3)^2 = (2r)^2 - 2(2r)(3) + (3)^2
  4. Simplification: Simplify (2r)22(2r)(3)+(3)2.(2r)^2 - 2(2r)(3) + (3)^2.(2r)22(2r)(3)+(3)2(2r)^2 - 2(2r)(3) + (3)^2=(2r2r)(223)r+33= (2r \cdot 2r) - (2 \cdot 2 \cdot 3)r + 3 \cdot 3=4r212r+9= 4r^2 - 12r + 9

More problems from Multiply two binomials: special cases