Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(2r2)2(2r - 2)^2

Full solution

Q. Find the square. Simplify your answer.\newline(2r2)2(2r - 2)^2
  1. Recognize special case: We are asked to find the square of the binomial (2r2)(2r - 2). The first step is to recognize that this is a special case of the algebraic identity (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.
  2. Identify values of aa and bb: Identify the values of aa and bb in the binomial (2r2)(2r - 2). By comparing it to the general form (ab)2(a - b)^2, we can see that a=2ra = 2r and b=2b = 2.
  3. Apply algebraic identity: Apply the algebraic identity (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2 to the binomial (2r2)(2r - 2) using the identified values of aa and bb.(2r2)2=(2r)22(2r)(2)+(2)2(2r - 2)^2 = (2r)^2 - 2\cdot(2r)\cdot(2) + (2)^2
  4. Simplify each term: Simplify each term in the expression (2r)22(2r)2+(2)2(2r)^2 - 2\cdot(2r)\cdot 2 + (2)^2.(2r)2=4r2(2r)^2 = 4r^22(2r)2=8r2\cdot(2r)\cdot 2 = 8r(2)2=4(2)^2 = 4So, (2r2)2=4r28r+4(2r - 2)^2 = 4r^2 - 8r + 4

More problems from Multiply two binomials: special cases